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Equations of Motion

Einstein gravity coupled to the Maxwell electromagnetic field with SI units and MTW sign conventions:
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where G is Newton?s constant. The speed of light is c, the permittivity of free space is ϵ0, and the permeability of
free space is µ0; these are related by ϵ0µ0c

2 = 1. The field strength tensor is Fµν ≡ ∂µAν − ∂νAµ and Jσ(g, ψ) is
an “external” charge current that depends on the metric gµν and some matter fields ψI . (We assume non-derivative
coupling; that is, Jµ doesn’t depend on derivatives of the metric.) The action for the fields ψI is denoted Sψ[g, ψ].
The variation of the action gives
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so the equations of motion are
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with the stress–energy–momentum (SEM) tensor
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The SEM tensor is conserved, ∇νT
µν = 0, when the equations of motion hold. We can compute directly the covariant

divergence of the EM part of the SEM tensor:
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where we have used the equation of motion δS/δAσ = 0. The terms in parenthesis, antisymmetrized on α and β,
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This vanishes because Fνν = ∇µAν −∇νAµ. So we’re left with
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EM = −FµαJα (12)
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Dimensions

Let M , L, T , and I denote mass (in kilograms), length (in meters), time (in seconds) and current (in Amperes),
respectively. The dimensions of the constants are

c ∼ L/T (13)

G ∼ L3/(M · T 2) (14)

ϵ0 ∼ I2 · T 4/(M · L3) (15)

µ0 ∼M · L/(T 2 · I2) (16)

Tensor components are coordinate dependent, so their dimensions depend on the dimensions of the coordinates. Let
the coordinates have dimensions of length:

xµ ∼ L (17)

Then

gµν ∼ gµν ∼ 1 (18)

and we can raise and lower indices without changing dimensions. Dimensions of other tensors:

Rµανβ ∼ 1/L2 (19)

Aµ ∼M · L/(T 2 · I) (20)

Fµν ∼M/(T 2 · I) (21)

Jµ ∼ I/L2 (22)

Tµν ∼M/(T 2 · L) (23)

Electric and Magnetic Fields

The velocity of an observer is

Uµ ≡ ∂xµ

∂τ
∼ L/T (24)

where τ ∼ T is proper time along the worldline. It satisfies the normalization condition UµUµ = −c2. The electric
and magnetic fields as seen by this observer are

Eµ ≡ FµνUν ∼M · L/(T 3 · I) (25)

Bµ ≡ − 1

2c
ϵµνσρUνFσρ ∼M/(T 2 · I) (26)

The field strength tensor is

Fµν =
1

c2
(UµEν − UνEµ) +

1

c
ϵµνσρUσBρ (27)

The scalar potential and electric charge density are:

Φ ≡ AσU
σ ∼M · L2/(T 3 · I) (28)

ρe ≡
1

c2
JσU

σ ∼ I · T/L3 (29)

The 3-vector potential and the 3-current are defined by:

A(3)
µ ≡⊥νµ Aν ∼M · L/(T 2 · I) (30)

J (3)
µ ≡⊥νµ Jν ∼ I/L2 (31)

where

⊥νµ≡ δνµ + UµU
ν/c2 (32)

is the spatial projection tensor for the observer.
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Stress, Energy and Momentum

The stress–energy–momentum tensor is
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The momentum density and energy flux,
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are related by (energy flux) = c2(momentum density). The momentum flux and spatial stress are defined by

(momentum flux)µν = (spatial stress)µν =⊥µα Tαβ ⊥νβ (38)

=
1

2
(ϵ0E

2 +B2/µ0) ⊥µν −(ϵ0E
µEν +BµBν/µ0)− (Φρe −A(3)

σ Jσ(3)) ⊥
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Fermi Normal Coordinates

Let x̄µ denote Fermi normal coordinates (FNC) defined by the observer whose velocity is Uµ. Thus, x̄0/c is
the proper time along the observer’s worldline. The observer defines a triad of vectors, eµi that are Fermi-Walker
transported along the worldline. These vectors are spatial, eµi gµνU

ν = 0, and orthogonal, eµi gµνe
ν
j = δij . The spatial

coordinates of an event, x̄i, are the coefficients in the expansion of the vector x̄ieµi that is tangent to the spacelike
geodesic that connects the worldline to the event, and has magnitude equal to the length of the geodesic.

In Fermi normal coordinates, the metric on the observer’s wordline is ḡµν = ηµν = diag(−1, 1, 1, 1) and

Ūµ = (c, 0, 0, 0) (41)

ēµ1 = (0, 1, 0, 0) (42)

ēµ2 = (0, 0, 1, 0) (43)

ēµ3 = (0, 0, 0, 1) (44)

so that Ūµ = (−c, 0, 0, 0). We have

Ēi = F̄ 0i (45)

B̄i =
1

2
ϵ̄ijkF̄jk (46)

Φ̄ = cĀ0 (47)

ρ̄e = J̄0/c (48)

Ā
(3)
i = Āi (49)

J̄
(3)
i = J̄i (50)

where the 3D Levi–Civita tensor is defined by ϵναβ ≡ Uµϵµναβ/c. Thus, in FNC, ϵijk = ±1 if i, j, k is an even/odd
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permutation of 1,2,3. The components of the stress-energy-momentum tensor are:

(energy density) = T̄ 00 (51)

(momentum density)i =
1

c
T̄ i0 (52)

(energy flux)i = cT̄ i0 (53)

(momentum flux)ij = (spatial stress)ij = T̄ ij (54)


